Chernoff bounds - traduction vers Anglais
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Chernoff bounds - traduction vers Anglais

EXPONENTIALLY DECREASING BOUNDS ON TAIL DISTRIBUTIONS OF SUMS OF INDEPENDENT RANDOM VARIABLES
Chernoff's inequality; Chernoff bounds; Chernoff inequality; Matrix chernoff bound; Bernstein-Chernoff inequality
  • chi-square]] random variable

Chernoff bounds         
= ?
Ex: Probability of error, generalised Chernoff bounds and related parameters will be used as performance criteria.
Chernoff         
FAMILY NAME
----
* Chernoff bounds = ?
* Chernoff faces = caras de Chernoff
touchline         
  • Players not actively participating in a game and coaches remain on the sidelines during play
CONCEPT IN MANY SPORTS RELATED TO THE EDGE OF THE PLAYING AREA
Sidelines; Touch-line; Out of Bounds; Touch line; Out of bounds (gridiron football); Out of bounds (American football); Out of bounds (sports); Out-of-bounds; Out of bounce; Out-of-bounce; Touchline; Boundary (sports); Boundary line (sport)
línea de banda

Définition

out of bounds
1. beyond the acceptable or permitted limits.
2. (in sport) beyond the field of play.

Wikipédia

Chernoff bound

In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function. The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian). It is especially useful for sums of independent random variables, such as sums of Bernoulli random variables.

The bound is commonly named after Herman Chernoff who described the method in a 1952 paper, though Chernoff himself attributed it to Herman Rubin. In 1938 Harald Cramér had published an almost identical concept now known as Cramér's theorem.

It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay. However, when applied to sums the Chernoff bound requires the variates to be independent, a condition that is not required by either Markov's inequality or Chebyshev's inequality (although Chebyshev's inequality does require the variates to be pairwise independent).

The Chernoff bound is related to the Bernstein inequalities. It is also used to prove Hoeffding's inequality, Bennett's inequality, and McDiarmid's inequality.